Asymptotic Fermat for signatures (p,p,2)$(p,p,2)$ and (p,p,3)$(p,p,3)$ over totally real fields

نویسندگان

چکیده

Let K be a totally real number field and consider Fermat-type equation A p + B b q = C c r $Aa^p+Bb^q=Cc^r$ over K. We call the triple of exponents ( , ) $(p,q,r)$ signature equation. prove various results concerning solutions to Fermat with 2 $(p,p,2)$ 3 $(p,p,3)$ using method involving modularity, level lowering image inertia comparison. These generalize extend recent work I?ik, Kara Özman. For example, degree n ? h $2 \nmid h_K^+$ inert. Moreover, suppose there is prime ? 5 $q\geqslant 5$ which ramifies in satisfies gcd ? 1 $\gcd (n,q-1)=1$ then we know that $a^p+b^p=c^2$ has no primitive, non-trivial ? O $(a,b,c) \in \mathcal {O}_K^3$ | b$ for sufficiently large.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representations over Totally Real Fields

In this paper, we study the level lowering problem for mod 2 representations of the absolute Galois group of a totally real field F. In the case F = Q, this was done by Buzzard; here, we generalise some of Buzzard’s results to higher weight and arbitrary totally real fields, using Rajaei’s generalisation of Ribet’s theorem and previous work of Fujiwara and the author. 2000 Mathematics Subject C...

متن کامل

Perfect Forms over Totally Real Number Fields

A rational positive-definite quadratic form is perfect if it can be reconstructed from the knowledge of its minimal nonzero value m and the finite set of integral vectors v such that f(v) = m. This concept was introduced by Voronöı and later generalized by Koecher to arbitrary number fields. One knows that up to a natural “change of variables” equivalence, there are only finitely many perfect f...

متن کامل

Companion Forms Over Totally Real Fields, II

We prove a companion forms theorem for mod l Hilbert modular forms. This work generalises results of Gross and Coleman–Voloch for modular forms over Q, and gives a new proof of their results in many cases.

متن کامل

Companion Forms over Totally Real Fields

We show that if F is a totally real field in which p splits completely and f is a mod p Hilbert modular form with parallel weight 2 < k < p, which is ordinary at all primes dividing p and has tamely ramified Galois representation at all primes dividing p, then there is a “companion form” of parallel weight k′ := p + 1 − k. This work generalises results of Gross and Coleman–Voloch for modular fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematika

سال: 2022

ISSN: ['2041-7942', '0025-5793']

DOI: https://doi.org/10.1112/mtk.12162